

# Technical Manual

SATION Switch Actuator





# Content

|                                                                                                                          | 1.Overview                    | 3            |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------|
| 1.1 Device Overview                                                                                                      |                               | 3            |
| 1.2 Function.1.2.1 Function Preview.2. Communication object.                                                             |                               | 4            |
| 2.1 Common objects of each channel                                                                                       | •••••                         | 5            |
| 2.2 General Control Object                                                                                               | •••••                         | 6            |
| 2.3 Current Detection Object                                                                                             | • • • • • • • • • • • • • • • | 6            |
| <pre>2.4 Default Value Of Communication Object</pre>                                                                     |                               |              |
| 3.1 General Settings                                                                                                     | •••••                         | 8            |
| 3.2 Channel Selection                                                                                                    | •••••                         | 9            |
| <ul> <li>3.3 General Parameters</li> <li>4. Main Control Function</li> <li>5. Locking / Unlocking Behavior</li> </ul>    |                               | . 11         |
| 5.1 Power On / Power Off Behavior                                                                                        | •••••                         | . 13         |
| 5.2 Switch Output                                                                                                        | •••••                         | . 14         |
| <ul> <li>5.3 On / Off Delay</li> <li>6. Logic Function</li> <li>7. Scene Function</li> <li>8. Crridor Lghting</li> </ul> |                               | . 17<br>. 18 |
| 8.1 Overview                                                                                                             |                               | . 22         |
| 8.2 early warning and warning                                                                                            | •••••                         | . 24         |
| <ul><li>8.3 Manual Closing</li><li>9. Continuation Function</li></ul>                                                    |                               |              |
| 9.1 Current Detection9.1.1 regular settings9.1.2 total current measurement9.1.3 Monitoring Overload                      |                               | . 27<br>. 29 |
| <pre>9.2 Fault Current / Loading Failure 10. Working Time</pre>                                                          |                               |              |
| 10.1 Working Time Timer                                                                                                  |                               | . 33         |
| 10.2 Countdown Timer                                                                                                     |                               | . 34         |

#### SATION Technologies

- 2 -



# 1. Overview

## 1.1 Device Overview

This manual refers to the following devices:

- SATION-SW0001.2010 Switch Actuator 1ch,230V AC,20A, With current detection
- SATION-SW0004.2010 Switch Actuator 4ch,230V AC,20A, With current detection
- SATION-SW0006.2010 Switch Actuator 6ch,230V AC,20A, With current detection
- SATION-SW0008,2010 Switch Actuator 8ch,230V AC,20A, With current detection
- SATION-SW0012.2010 Switch Actuator12ch,230V AC,20A, With current detection
- SATION-SW0001.1611 Switch Actuator 1ch,230V AC,16A, With current detection
- SATION-SW0004.1611 Switch Actuator 4ch,230V AC,16A, With current detection
- SATION-SW0006,1611 Switch Actuator 6ch,230V AC,16A, With current detection
- SATION-SW0008.1611 Switch Actuator 8ch,230V AC,16A, With current detection
- SATION-SW0012.1611 Switch Actuator 12ch,230V AC,16A, With current detection
- •
- SATION-SW0002.1001 Switch Actuator 2ch,230V AC,10A, Without current detection
- SATION-SW0004.1001 Switch Actuator 4ch,230V AC,10A, Without current detection
- SATION-SW0006.1001 Switch Actuator 6ch,230V AC,10A, Without current detection
- SATION-SW0008.1001 Switch Actuator 8ch,230V AC,10A, Without current detection
- SATION-SW0012.1001 Switch Actuator 12ch,230V AC,10A, Without current detection
- SATION-SW0004.1601 Switch Actuator 4ch,230V AC,16A, Without current detection
- SATION-SW0006.1601 Switch Actuator 6ch,230V AC,16A, Without current detection
- SATION-SW0008.1601 Switch Actuator 8ch,230V AC,16A, Without current detection
- SATION-SW0012.1601 Switch Actuator12ch,230V AC,16A, Without current detection

# SATION

## 1.2 Function

The following functions are applicable to each channel (see the table below). The number of channels depends on the product design, such as 1, 2, 4, 8 and 12 channels. Channels can be set in three different states:

• Prohibit

Channel does not work, channel related objects are not visible in ETS.

• Switch

.

The channel works in the switch mode and has a variety of parameters to control the switch processing mode. Hallway

The channel works in the corridor lighting mode, which is different from the switch mode in that the channel will automatically close after a set time.

| Functional group           | Function                              |  |  |
|----------------------------|---------------------------------------|--|--|
| Group address              | User set it by yourself               |  |  |
| Reset action               | Action in case of power failure       |  |  |
|                            | Action on power.                      |  |  |
|                            | Start wait time.                      |  |  |
| Relay mode                 | Normally open / normally closed       |  |  |
| Switching function         | switch                                |  |  |
|                            | General control                       |  |  |
| Timing function            | Open delay                            |  |  |
|                            | Closing delay                         |  |  |
| Hallway lighting function  | Lighting time                         |  |  |
|                            | Early warning function                |  |  |
|                            | Manual closing                        |  |  |
|                            | Re trigger enable                     |  |  |
| Advanced functions         | locking                               |  |  |
|                            | Logic (and / or)                      |  |  |
| Scene function             | Each channel has 8 scenes to choose   |  |  |
| <u> </u>                   | from.                                 |  |  |
| State function             | feedback                              |  |  |
| Current detection function | Channel independent current detection |  |  |
|                            | error message                         |  |  |
|                            | Total current detection               |  |  |
| Working timing function    | Working time timer                    |  |  |
|                            | Countdown timer                       |  |  |

#### 1.2.1 Function Preview

picture  $\mathbf{1}$ 



# 2. Communication object

### 2.1 Common objects of each channel

The following figure shows the common objects of each channel, which can be enabled by corresponding parameters. Each channel occupies 18 numbers, but not all numbers will assign objects. The first channel occupies numbers 0-17, the second occupies numbers 8-35, and so on. The objects used in the design project need to be assigned group addresses :

The following figure shows some objects of channel A and B. channel a is selected as a general switch with logic and locking function. Channel B is selected as corridor lighting with locking function:

| Number       | Name             | Object Function | Description | Group Addresses | Leng   | С | R | W | Т | U |
|--------------|------------------|-----------------|-------------|-----------------|--------|---|---|---|---|---|
| ⊒‡0          | Channel A        | Switch On/Off   |             |                 | 1 bit  | С | - | w | - | - |
| <b>⊒</b> ‡2  | Channel A        | Block           |             |                 | 1 bit  | С | - | W | - | - |
| <b>⊒</b> ‡ 4 | Channel A        | Scene           |             |                 | 1 Byte | С | - | W | - | - |
| <b>⊒</b> ‡5  | Channel A        | Status          |             |                 | 1 bit  | С | R | - | Т | - |
| <b>⊒</b> ‡6  | Channel A        | Logic 1         |             |                 | 1 bit  | С | - | W | - | - |
| <b>⊒</b> ‡7  | Channel A        | Logic 2         |             |                 | 1 bit  | С | - | W | - | - |
| ⊒‡9          | Channel B        | Staircase       |             |                 | 1 bit  | С | - | W | - | - |
| ⊒‡10         | Channel B        | Block           |             |                 | 1 bit  | С | - | W | - | - |
| <b>⊒</b> ‡13 | Channel B        | Status          |             |                 | 1 bit  | С | R | - | т | - |
| ⊒⊉96         | Central Function | Switch On/Off   |             |                 | 1 bit  | С | - | W | - | - |

#### The following table shows the functions that can be selected when a channel is selected as a switch function :

| NO. | Function     | Usage                       | Data Type  |              |
|-----|--------------|-----------------------------|------------|--------------|
| 0   | switch       | Open / close channel        | DPT 1.001  | Input, write |
| 2   | locking      | Lockout channel             | DPT 1.001  | Input, write |
| 4   | scene        | Transfer the selected scene | DPT 18.001 | Input, write |
| 5   | status       | Return state                | DPT 1.001  | Output, read |
| 6   | logic 1      | display when active         | DPT 1.001  | Input, write |
| 7   | logic2       | display when active         | DPT 1.001  | Input, write |
| +18 | Next channel |                             |            |              |

picture 2: "switch"

The following table shows the functions that can be selected when a channel is selected as hallway function :

| NO. | Function     | Usage                   | Date T    | upe |              |
|-----|--------------|-------------------------|-----------|-----|--------------|
| 1   | hallway      | Stair lighting on / off | DPT 1.001 | 1   | Input, write |
| 2   | locking      | Lockout channel         | DPT 1.001 | 1   | Input, write |
| 5   | status       | Return state            | DPT 1.001 | 1   | Output, read |
| +18 | Next channel |                         |           |     |              |

picture **3**: "hallway"

# 2.2 General Control Object

The general control object is valid at any time. There is only one in the whole project. The number is related to the number of channels. The communication to the main control object will be valid for all channels that have enabled the main control function.

| NC | Э. | Function                 | Usage                               | Data Type |              |
|----|----|--------------------------|-------------------------------------|-----------|--------------|
|    |    | General control function | Number depends on product<br>design | DPT 1.001 | Input, write |

picture  ${\bf 4}{:}\,{\tt Global}$  function object

## 2.3 Current Detection Object

| 10.    | Function                 | bjects related to current d      | Data Type            |                 |
|--------|--------------------------|----------------------------------|----------------------|-----------------|
|        |                          | Calculate the actual             | Data Type            |                 |
| 8      | Response operating hours | working time                     | DPT 7.007            |                 |
|        |                          | -                                | DDT 7 007            | 0               |
| 8      | Time to the next         | Calculate time to                | DPT 7.007            | Output,         |
| -      | service                  | next service                     | DPT 1.001            | read            |
| 9      | Reset operating<br>hours | Reset working                    | DP1 1.001            | Input, write    |
|        | Reset service            | time timer                       | DPT 1.001            | Transit and the |
| 9      | Reset service            | Reset next                       | DF1 1.001            | Input write     |
| 10     | Service required         | service timer<br>Service request | DPT 1.001            | Output, read    |
|        | Current value            | -                                |                      |                 |
| 11     |                          | Actual current value             | DPT 7.02/ DPT 9.021/ | Output, read    |
|        |                          |                                  | DPT 14.019/          |                 |
|        |                          |                                  | DPT 9.024            |                 |
| 12     | Exceedance of load       | Overload                         | DPT1.001             | Output,         |
| . –    |                          |                                  |                      | read            |
| 13     | Lower deviation of       | Low load                         | DPT 1.001            | Output,         |
| 10     | load                     |                                  |                      | read            |
| 14     | Fault current            | Current error                    | DPT 1.001            | Output,         |
|        |                          |                                  |                      | read            |
| 14     | Loadfaulty               | Load error                       | DPT 1.001            | Output,         |
|        |                          |                                  |                      | read            |
| 14     | Fault current/Load       | Current / load error             | DPT 1.001            | Output,         |
|        | faulty                   |                                  | DP1 1.001            | read            |
| +18    | next channel             |                                  |                      |                 |
| 76/148 | Value of total current   | Total current of all             | DPT 9.021/           | Output          |
|        |                          | channels                         | DPT 14.019/ DPT      | read            |
|        |                          |                                  | 9.024                |                 |
| 77/140 | Exceedance of total      | Totol ourmont                    |                      |                 |
| ///149 | current                  | Total current                    | DPT 1.001            |                 |
|        | Current                  | overload                         |                      |                 |

The following figure shows the objects related to current detection:

picture 5: Current detection related objects



## 2.4 Default Value Of Communication Object

|        | default setting    |                         |          |          |   |   |   |   |   |
|--------|--------------------|-------------------------|----------|----------|---|---|---|---|---|
| NO.    | Name               | Object function         | length   | priority | С | R | w | Т | U |
| 0      | channel A          | On / off                | 1 status | Low      | Х |   | Х |   |   |
| 1      | channel A          | hallway                 | 1 status | Low      | Х |   | Х |   |   |
| 2      | channel A          | locking                 | 1 status | Low      | Х |   | Х |   |   |
| 4      | channel A          | scene                   | 1 status | Low      | Х |   | Х |   |   |
| 5      | channel A          | state                   | 1 status | Low      | Х | Х |   | Х |   |
| 6      | channel A          | logic 1                 | 1 status | Low      | Х |   | Х |   |   |
| 7      | channel A          | logic 2                 | 1 status | Low      | Х |   | Х |   |   |
| 8      | channel A          | Working time count      | 2 byte   | Low      | Х | Х |   | Х |   |
| 8      | channel A          | Next service time       | 2 byte   | Low      | Х | Х |   | Х |   |
| 9      | channel A          | Reset working count     | 1 status | Low      | Х |   | Х |   |   |
| 9      | channel A          | Reset next service time | 1 status | Low      | Х |   | Х |   |   |
| 10     | channel A          | service request         | 1 status | Low      | Х | Х |   | Х |   |
| +18    | Next channel       |                         |          |          |   |   |   |   |   |
| 78/150 | Global<br>function | On / off                | 1 status | Low      | Х |   | Х |   |   |

The following figure shows the default values for communication objects :

picture6: Object defaults

From the above figure, you can understand the default value of the communication object. According to the needs, its priority and communication flag can be modified. The meaning of each flag is: c-communication, r-read, w-write, t-transmission, u-update.



# 3. ETS Available Parameters

#### 3.1 General Settings

The following figure shows the global parameters:

|                 | General |
|-----------------|---------|
| Startup timeout | 1 s 🔹   |
| Total current   | activ 🔹 |

picture 1: General Settings

The parameter "startup timeout" is used to adjust the waiting time of power on startup. Before the waiting timeout, all communication commands are invalid.

#### The following table describes the parameter value ranges:

| Parameter name  | dynamic range   | Remarks                                                                                                    |
|-----------------|-----------------|------------------------------------------------------------------------------------------------------------|
|                 | [default value] |                                                                                                            |
| Startup timeout | 1-60s<br>[1s]   | The application function is<br>valid only after the device<br>waits for the time set by this<br>parameter. |

Picture 2: General settings



## 3.2 Channel Selection

The following figure shows the channel selection menu:

|           | Channel Preselection |
|-----------|----------------------|
| Channel A | Switch               |
| Channel B | Staircase 💌          |
| Channel C | not activ            |
| Channel D | not activ            |
| Channel E | not activ            |
| Channel F | not activ            |
| Channel G | not activ            |
| Channel H | not activ            |
| Channel I | not activ            |
| Channel J | not activ            |
| Channel K | not activ            |
| Channel L | not activ            |
|           |                      |

picture 3:channel selection

There are three different modes to choose from. Different modes have corresponding parameters. The selection mode "not active" indicates that the channel is forbidden, and the parameters of the corresponding channel will not be visible .

| The following f | figure shows | the optiona | I modes for | r each channel: |
|-----------------|--------------|-------------|-------------|-----------------|
|                 |              |             |             |                 |

| ETS-Name      | dynamic range<br>[default value]                                  | Remarks      |
|---------------|-------------------------------------------------------------------|--------------|
| Channel A-[O] | <ul> <li>not active</li> <li>Switch</li> <li>Staircase</li> </ul> | Channel mode |

Picture4: channel



#### 3.3 General Parameters

The following parameters are used for both the switch function of the channel and the stair function.

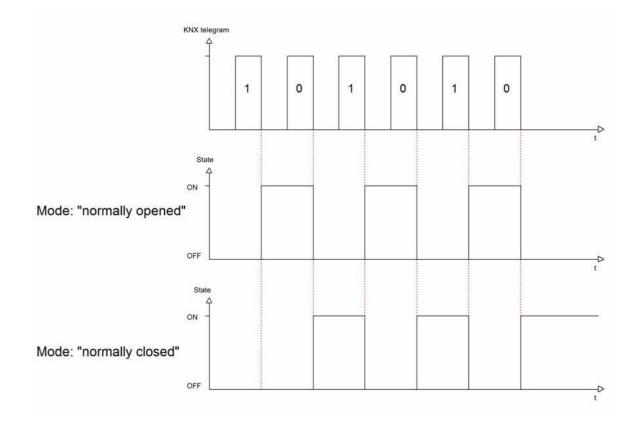
#### Relay Operation Mode

The following figure shows the options for this parameter:

picture **5**: working mode

Mode

normaly opened
normaly closed


#### The following table describes the range of this parameter:

| ETS- Name | dynamic range<br><b>[default value]</b>                  | Remarks    |
|-----------|----------------------------------------------------------|------------|
| Mode      | <ul><li>normallyopened</li><li>normally closed</li></ul> | Relay mode |

picture 6: working mode



The following figure shows the action of the relay in the normally open and normally closed modes, and the signal message is alternating 1,0.



# 4. Main Control Function

The following figure shows the options of the main control function:

| Central Function | not activ |
|------------------|-----------|
|                  | not activ |
|                  | activ     |
|                  |           |

Picture 8: Global function

#### The following table shows the global function parameter range:

| 5                | 5 1 5                                       |                                                                               |
|------------------|---------------------------------------------|-------------------------------------------------------------------------------|
| Name             | dynamic range<br>[default value]            | Remarks                                                                       |
| Central function | <ul><li>not active</li><li>active</li></ul> | Enable / disable the main<br>control function of the<br>corresponding channel |

Picture 9: Global function

Each channel can independently enable ("active") / disable ("not active") the main control function. When sending a message to the main control object, all channels that enable the main control function will switch according to the message content, and the delay set by the delay parameter is equally effective. The use of the main control function can make the engineering design easier, Because multiple channels only need to send a message at the same time can respond.



The following table describes the global control objects:

| NO. | Name             | Length | Usage                                                              |
|-----|------------------|--------|--------------------------------------------------------------------|
|     | Central function | 1 Bit  | The number of objects controlled depends on the number of channels |

Picture 11: Global control object

# 5. Locking / Unlocking Behavior

The following figure is a screenshot of the lock and unlock options in ETS:

| Behaviour when locked   | Off • |
|-------------------------|-------|
| Behaviour when unlocked | 0n 🗸  |

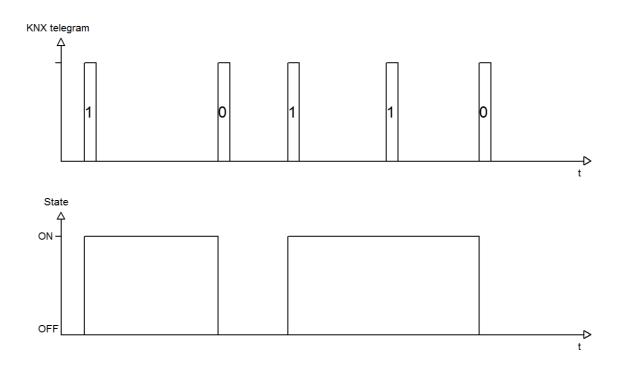
picture **12**: Blocking function

The following table is the options for lock and unlock parameters:

| Name                   | dynamic range<br>[default value] | Remarks                   |
|------------------------|----------------------------------|---------------------------|
| Behavior when locked   | ■ On                             | Set actions when blocking |
| Behavior when unlocked | <ul> <li>Off</li> </ul>          | and non blocking          |
|                        | no change                        |                           |

pictur **13**: Behavior of locking and unlocking

The function of locking and unlocking can be enabled and disabled by sending message 1 or 0 to the corresponding object. The parameter "behavior when locked" is used to define the action of the relay when the channel is locked. There are three options: "on", "off", "no change". The same option is also applicable to the parameter "behavior when unlocked".


The following table describes locking / unlocking objects:

| NO. | Name  | Length | Usage              |
|-----|-------|--------|--------------------|
| 2   | Block | 1 Bit  | blocks the channel |

Picture 13: Lock / unlock objects



The following figure shows the action state of the relay when locking and unlocking. The specific action is specified by the parameters "behavior when locked" and "behavior when unlocked":



Message value corresponding relationship:

## 5.1 Power On / Power Off Behavior

The following figure shows the options of power on / power off parameters in ETS:

| Behaviour at Bus power up   | no change 🔹 |
|-----------------------------|-------------|
| Behaviour at Bus power down | no change 🔹 |
|                             | Off<br>On   |
|                             | no change   |

Picture14: Power on / power off behavior

#### The following table describes the range of options for power on / power off parameters:

| ETS-Name                   | dynamic range                 | Remarks                    |
|----------------------------|-------------------------------|----------------------------|
|                            | [default value]               |                            |
| Behavior at bus power up/  | <ul> <li>On</li> </ul>        | Set the behavior of the    |
| Behavior at bus power down | <ul> <li>Off</li> </ul>       | channel when the device is |
|                            | <ul> <li>no change</li> </ul> | powered on / off           |

picture15: Power on / power off behavior



When the device is powered on or powered off, each channel can move to a specified state (option on, off) or keep the current state unchanged (option no change). Considering that the control channel state cannot continue after the bus is powered off, the designer should carefully consider the setting of this parameter.

#### 5.2 Switch Output

Some of the following parameters are only available when the channel is selected as the switch mode.

When channel a is selected as the switch function, a submenu called "channel a switch" will appear. The following is a screenshot of the submenu:

| Mode                        | normaly closed 🔹 |
|-----------------------------|------------------|
| On Delay [s]                | 0                |
| Off Delay [s]               | 0                |
|                             |                  |
| Central Function            | activ 💌          |
| Behaviour when locked       | Off 🗸            |
| Behaviour when unlocked     | On 🔻             |
| Behaviour at Bus power up   | no change 🔹      |
| Behaviour at Bus power down | no change 🔹      |
|                             |                  |
| Logical functions           | with two Objects |
| logic Operations            | OR 👻             |
|                             |                  |
| Szene                       | activ            |
|                             |                  |

Channel A Switching

picture **16**: Switch output

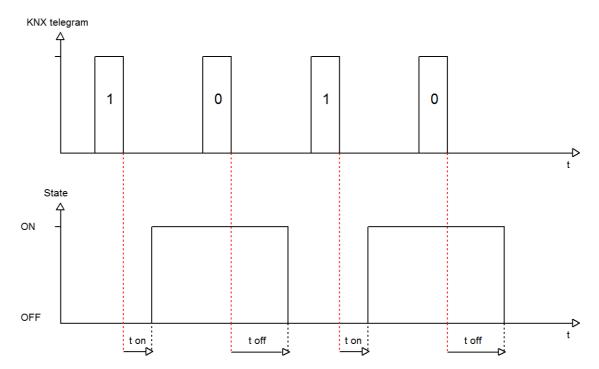


The following table describes the parameters available when the channel is a switch function:

| Name                       | dynamic range<br>[ <b>default value</b> ]                                        | Remarks                                              |
|----------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|
| Mode                       | <ul> <li>normallyopened</li> <li>normally closed</li> </ul>                      | Channel operation mode.                              |
| On-Delay                   | 030000 sec<br>[0=no delay]                                                       | Wait delay before opening the relay.                 |
| Off-Delay                  | 030000 sec<br>[0=no_delay]]                                                      | Wait time delay before closing the relay.            |
| Central function           | <ul> <li>not active</li> <li>active</li> </ul>                                   | Activate the global control function of the channel. |
| Behavior when locked       | <ul> <li>Off</li> <li>On</li> <li>no change</li> </ul>                           | Specifies the action when the channel is locked.     |
| Behavior when unlocked     | <ul> <li>Off</li> <li>On</li> <li>no change</li> </ul>                           | Specifies the action to unlock the channel.          |
| Behavior at bus power down | <ul> <li>Off</li> <li>On</li> <li>no change</li> </ul>                           | Specifies the action when the bus is powered down.   |
| Behavior at bus power up   | <ul> <li>Off</li> <li>On</li> <li>no change</li> </ul>                           | Specifies the action when the bus is powered on.     |
| Logic function             | <ul> <li>not active</li> <li>with one object</li> <li>withtwo objects</li> </ul> | Enable / disable logic function.                     |
| Logic operation            | <ul><li>And</li><li>Or</li></ul>                                                 | Select logical operations and / or.                  |
| Scene                      | <ul> <li>not active</li> <li>active</li> </ul>                                   | Activate scene function.                             |

picture16:Switch output




# 5.3 On / Off Delay

| The following figure shows the setup op | tions in ETS: |                         |
|-----------------------------------------|---------------|-------------------------|
| On Delay [s]                            | 0             | ▲<br>▼                  |
| Off Delay [s]                           | 0             | <mark>← [030000]</mark> |

picture 17:on/off delay

After the channel receives the opening message, it will delay the time specified by the parameter "on delay", and then it will actually execute the opening action. The principle of parameter "off delay". Same as this, it only means closing delay.

The following figure describes the function of two parameters:



# SATION

# 6. Logic Function

The following figure shows the options in ETS:

| with two Objects | • |
|------------------|---|
| OR               | • |
| OR<br>AND        |   |
| AND              |   |

picture 17: logic function

Logical functions

logic Operations

Logical function has two logical objects that can be enabled, and you can choose and operation or or or operation. When enabling and operation, the value of logical object will be "and" with the value of channel object. When the result is 1, the open action will be executed. When enabling or operation, the value of logical object will be with the value of channel object.

Perform the or operation. Whenever an object has a value of 1, the open action will be performed.

The following table describes two logical objects:

| NO. | Name              | Length | Usage                                                       |
|-----|-------------------|--------|-------------------------------------------------------------|
| 6   | Logicao objects 1 | 1 unit | When only one logical object is enabled, the object is used |
| 7   | Logical objects 2 | 1 unit | When two logical objects are enabled, the object is used    |

picture **18**: logical objects

Depending on the enabled logical object, only one or two logical objects are valid.

The following table describes the relationships of logical objects:

|           | And operation | on             | Or operati | ion          |                |
|-----------|---------------|----------------|------------|--------------|----------------|
| logical 1 | Logical 2     | Channel on/off | logical 1  | Logical<br>2 | Channel on/off |
| 0         | 0             | No             | 0          | 0            | No             |
| 0         | 1             | No             | 0          | 1            | Yes            |
| 1         | 0             | No             | 1          | 0            | Yes            |
| 1         | 1             | Yes            | 1          | 1            | Yes            |

picture 18 : logical objects



# 7. Scene Function

When there are different functions (such as lighting on, dimming, louver fan) that need to be processed at the same time, usually you have to send a message to each object separately to complete the function. However, with the scene function, this can be greatly simplified. Generally, you only need to send a message to call a certain scene to complete all the above functions. For example, Scene 1 corresponds to the opening of channel a, dimming of channel B respectively, For the louver fan of channel C, you only need to call Scene 1 through the corresponding group address. Then, the light of channel a will be turned on, the light of channel B will be turned to a certain brightness, and the louver fan of channel C will be turned to a certain position. Of course, this implies a condition that the scene objects of three channels should be associated to the same group address to achieve the above functions.

Each channel can independently enable / disable the scene function, and each channel has 8 scenes available for use. The scene also has the learning function, and the scene learning function of each channel can independently enable / disable. If the learning function of a scene is enabled and called, the value of the called scene will be updated to the value of the current channel.

The value of the scene object is 1 byte long.

The following figure shows the options of scene function in ETS:

Szene

| activ     | • |
|-----------|---|
| not activ |   |
| activ     |   |

picture19: scene function

The following table describes the related scene objects:

| No. | Name  | Length | Usage             |
|-----|-------|--------|-------------------|
| 4   | Scene | 1 Byte | Call of the scene |

Picture20: scene objects

For calling a scene, you only need to send the scene value to the corresponding object. The scene number range is 1-64, but the actual sending value must be 0-63.



Each channel has 8 scene options, and the scene selection range of each option is 1-64.

| Channel A, Scene |           |  |
|------------------|-----------|--|
| Save scene       | enabled 🔹 |  |
| Scene A          | Off 🔹     |  |
| Scene Number A   | 1         |  |
| Scene B          | Off 🔹     |  |
| Scene Number B   | 2         |  |
| Scene C          | Off       |  |
| Scene Number C   | 3         |  |
| Scene D          | Off 🔹     |  |
| Scene Number D   | 4         |  |
| Scene E          | Off 🔹     |  |
| Scene Number E   | 5 🔹       |  |
| Scene F          | Off 🔹     |  |
| Scene Number F   | 6         |  |
| Scene G          | Off 🔹     |  |
| Scene Number G   | 7         |  |
| Scene H          | Off 🔹     |  |
| Scene Number H   | 8         |  |

picture 21: scene options



The following table describes the value selection for the scene :

| ETS-Name       | dynamic range<br>[Default value]           | Remarks                                       |
|----------------|--------------------------------------------|-----------------------------------------------|
| Save scene     | <ul><li>Disabled</li><li>enabled</li></ul> | Enable / disable learning                     |
| Scene A        | • Off<br>• On                              | Activation scenario A                         |
| Scene number A | 1-64<br>[1]                                | Scene number; call value = scene<br>number -1 |
| Scene B        | • Off<br>• On                              | Activation scenario B                         |
| Scene number B | 1-64<br>[1]                                | Scene number; call value = scene<br>number -1 |
| Scene C        | ■ Off<br>■ On                              | Activation scenario C                         |
| Scene number C | 1-64<br>[1]                                | Scene number; call value = scene<br>number -1 |
| Scene D        | • Off<br>• On                              | Activation scenario D                         |
| Scene number D | 1-64<br>[1]                                | Scene number; call value = scene<br>number -1 |
| Scene E        | • Off<br>• On                              | Activation scenario E                         |
| Scene number E | 1-64<br>[1]                                | Scene number; call value = scene<br>number -1 |
| Scene F        | • Off<br>• On                              | Activation scenario F                         |
| Scene number F | 1-64<br>[1]                                | Scene number; call value = scene<br>number -1 |
| Scene G        | • Off<br>• On                              | Activation scenario G                         |
| Scene number G | 1-64<br>[1]                                | Scene number; call value = scene<br>number -1 |
| Scene H        | • Off<br>• On                              | Activation scenario H                         |
| Scene number H | 1-64<br>[1]                                | Scene number; call value = scene<br>number -1 |

Picture 22 : Scene parameters



In order to call the scene or save a new value to the scene, you must send a call or Save command to the corresponding scene object:

| scene | С    | call |      | Preservation |  |
|-------|------|------|------|--------------|--|
| Soome | 十六   | Dez. | Hex. | Dez.         |  |
| 1     | 0x00 | 0    | 0x80 | 128          |  |
| 2     | 0x01 | 1    | 0x81 | 129          |  |
| 3     | 0x02 | 2    | 0x82 | 130          |  |
| 4     | 0x03 | 3    | 0x83 | 131          |  |
| 5     | 0x04 | 4    | 0x84 | 132          |  |
| 6     | 0x05 | 5    | 0x85 | 133          |  |
| 7     | 0x06 | 6    | 0x86 | 134          |  |
| 8     | 0x07 | 7    | 0x87 | 135          |  |
| 9     | 0x08 | 8    | 0x88 | 136          |  |
| 10    | 0x09 | 9    | 0x89 | 137          |  |
| 11    | 0x0A | 10   | 0x8A | 138          |  |
| 12    | 0x0B | 11   | 0x8B | 139          |  |
| 13    | 0x0C | 12   | 0x8C | 140          |  |
| 14    | 0x0D | 13   | 0x8D | 141          |  |
| 15    | 0x0E | 14   | 0x8E | 142          |  |
| 16    | 0x0F | 15   | 0x8F | 143          |  |
| 17    | 0x10 | 16   | 0x90 | 144          |  |
| 18    | 0x11 | 17   | 0x91 | 145          |  |
| 19    | 0x12 | 18   | 0x92 | 146          |  |
| 20    | 0x13 | 19   | 0x93 | 147          |  |
| 21    | 0x14 | 20   | 0x94 | 148          |  |
| 22    | 0x15 | 21   | 0x95 | 149          |  |
| 23    | 0x16 | 22   | 0x96 | 150          |  |
| 24    | 0x17 | 23   | 0x97 | 151          |  |
| 25    | 0x18 | 24   | 0x98 | 152          |  |
| 26    | 0x19 | 25   | 0x99 | 153          |  |
| 27    | 0x1A | 26   | 0x9A | 154          |  |
| 28    | 0x1B | 27   | 0x9B | 155          |  |
| 29    | 0x1C | 28   | 0x9C | 156          |  |
| 30    | 0x1D | 29   | 0x9D | 157          |  |
| 31    | 0x1E | 30   | 0x9E | 158          |  |
| 32    | 0x1F | 31   | 0x9F | 159          |  |

Picture22 :call and save



# 8. Crridor Lghting

The following parameters are only useful when a channel is selected as a corridor lighting feature.

#### 8.1 Overview

When a channel is selected as the corridor lighting function, corresponding submenu will appear to set the parameters.

| normaly closed |
|----------------|
| 120            |
| activ          |
| 1              |
| 10             |
| not activ      |
| not activ      |
|                |
| not activ      |
| no change 🔹    |
|                |

The following figure shows the parameters that can be set: Channel B Staircase

Picture 23 : corridor lighting

SATION Technologies

L



The following table describes all the parameters that can be used for corridor lighting:

| Name                       | dynamic range<br>[Default value]  | Remarks                                                                                                                                          |
|----------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Mode                       | normallyopened<br>normally closed | Channel mode selection                                                                                                                           |
| Time for staircase [s]     | 0…65535 sec<br>[120 sec]          | Duration of illumination                                                                                                                         |
| Prewarning                 | <b>not active</b><br>active       | Activate alert function                                                                                                                          |
| Warning time [s]           | 065535 sec<br>[120 sec]           | Warning duration                                                                                                                                 |
| Prewarning time [s]        | 065535 sec<br>[120 sec]           | Reopen duration                                                                                                                                  |
| Manual switching off       | <b>not active</b><br>active       | Enable to turn off lighting manually                                                                                                             |
| Extend staircase time      | not active<br>active              | Enable continuous lighting function<br>(when lighting is on,f the switch on<br>command is received again, the lighting<br>time will be continued |
| Central function           | <b>not active</b><br>active       | Activate global control function                                                                                                                 |
| Behavior when locked       | Off<br>On<br><b>no change</b>     | Action when the control channel is locked                                                                                                        |
| Behavior when unlocked     | Off<br>On<br><b>no change</b>     | Action when unlocking the control channel                                                                                                        |
| Behavior at bus power down | Off<br>On<br><b>no change</b>     | Control action in case of power failure                                                                                                          |
| Behavior at bus power up   | Off<br>On<br><b>no change</b>     | Control the action when power on                                                                                                                 |

Picture 23 : Corridor function parameters



#### The following figure shows the lighting time options:

| Channel F Staircase    |                  |  |
|------------------------|------------------|--|
| Mode                   | normaly opened 🔹 |  |
| Time for Staircase [s] | 120              |  |
| Prewarning             | not activ        |  |

Picture 24 : Corridor lighting time

The difference between corridor lighting and room lighting is that it will turn off automatically after lighting for a period of time. The parameter "time for staircase" is used to set the lighting time. More other functions will be described later.

The following table describes the communication objects that control corridor lighting:

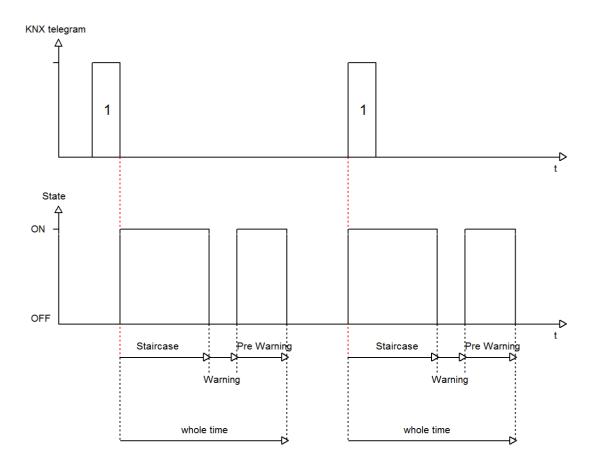
| No. | Name      | Length | Usage                        |
|-----|-----------|--------|------------------------------|
| 1   | Staircase | 1 unit | Corridor control call object |

Picture 25 : Corridor lighting objects

## 8.2 early warning and warning

The following figure shows the warning and warning parameters:

| Prewarning             | activ | •        |
|------------------------|-------|----------|
| Warning Time [s]       | 1     | [030000] |
| Prewarning Time in [s] | 10    | ×        |


Picture 26 : Warning and warning parameters

The warning function can be enabled by setting the parameter "prewarning" to "active".

The parameter "warningtime" sets the time when the lamp is turned off for a short time, usually 1-3 seconds. The short-time turn off of the lamp can be used to inform that the lamp will be turned off soon. The parameter "prewarning time" sets the duration when the lamp is turned on again, and then the lamp will be turned off.



The whole control process of the lamp consists of three parts, which can be illustrated in the following figure:



## 8.3 Manual Closing

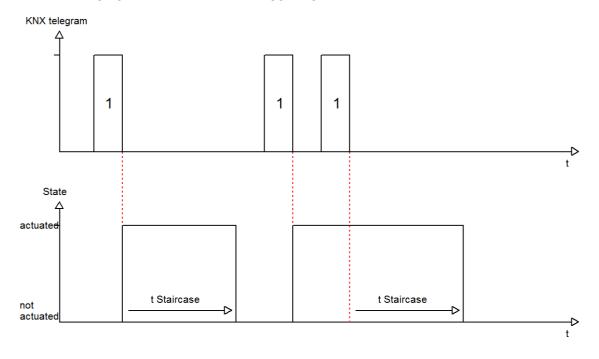
The figure below shows the manual shutdown parameters:

| not activ |
|-----------|
| THUL ACUY |
| activ     |
|           |

Picture 27 :manual closing

If the manual close function is enabled, the channel can be closed manually without waiting for it to close automatically.




# 9. Continuation Function

The following figure shows the continuation parameters:

| Extend Staircase time | not activ | <b>.</b> |
|-----------------------|-----------|----------|
|                       | not activ |          |
|                       | activ     |          |
|                       |           |          |
| Picture 28 : Duration |           |          |

If the continuation function is activated, during the channel opening, if the opening peration is triggered again, the channel will be re timed, otherwise, the re triggering command is invalid.

The following figure illustrates the re triggering mechanism :





## 9.1 Current Detection

The current detection function of each channel must be activated by corresponding parameters:

| Current measurement | activ     |
|---------------------|-----------|
|                     | not activ |
|                     | activ     |
|                     |           |

Picture 29 : Activate current detection

If the current detection function is activated, a new submenu will appear in which various parameters can be selected.

Note: current detection parameters are only valid for products with current detection function. This part of parameters can be ignored for products without current detection.

#### 9.1.1 regular settings

The following figure shows the current measurement parameters:

|                                              | Channel A Current measurement |
|----------------------------------------------|-------------------------------|
| Object selection for the current measurement | Whole value in mA (DPT 7.012) |
| Add the channel to total current measurement | activ                         |
| Send current value after changes value       | 5% 🔹                          |
| Cyclic sending                               | 60 min 🔻                      |

Picture 30 : General setting of current detection

#### The following table shows the parameters used for current detection:

| ETS - Name                                   | dynamic range<br>[ <b>Default value ]</b>                                                                  | Remarks                                                                      |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Object selection for the current measurement | <ul> <li>Whole value in mA</li> <li>Floating value in mA</li> <li>Value in A</li> </ul>                    | Select object value type                                                     |
| Add the channel to total current measurement | <b>not active</b><br>active                                                                                | Select whether the channel current value is added to the total current value |
| Send actual value after changes value        | not active, 1% -<br>75%<br><b>[not active]</b>                                                             | Activate / set current range to send message                                 |
| Cyclic sending                               | <ul> <li>not active</li> <li>15min</li> <li>30min</li> <li>60min</li> <li>90min</li> <li>120min</li> </ul> | Activate / set the interval of sending message                               |

Picture 31 :regulai settings



For each channel, the value type of its current transmitting object is optional. The accuracy of current measurement depends on the selected object type.

There are three types of precision:

- Whole value in mA The current value is in milliamperes and only integer values are sent
- Floating value in mA The current value is in milliamperes and is sent as a floating point number
- Value in A

The current value is in ampere and sent in floating-point number.

| •                                                                            |                         |
|------------------------------------------------------------------------------|-------------------------|
| Object selection for the current measurement                                 | Value in kW (DPT 9.024) |
| Factor for conversion into theoretical wattage kW:<br>Current value x Factor | 230                     |
| (Factor = Voltage x cos Phi)                                                 |                         |
|                                                                              |                         |
| Picture 32 : Power calculation                                               |                         |

The power value of the channel is just an approximate multiplication calculation.

More parameters can be used for the current detection function. For example, you can set the sending conditions. Send the current value after the current changes more than a certain ratio, or send at a fixed interval.

The following table shows the current value sending object:

| Number | Name          | Length   | Usage                                        |
|--------|---------------|----------|----------------------------------------------|
| 11     | Current value | 2/4 Byte |                                              |
|        |               |          | Real-time current value of the send channel. |
|        |               |          |                                              |

Picture 33; Current detection communication object



#### 9.1.2 total current measurement

The measurement of the total current can be activated in the submenu "general" (see 4.1). Each channel can choose whether to add its current to the total current.

The following figure shows the parameters for the total current measurement:

|                                                                              | Total current           |  |  |
|------------------------------------------------------------------------------|-------------------------|--|--|
| Object selection for the current measurement                                 | Value in kW (DPT 9.024) |  |  |
| Factor for conversion into theoretical wattage kW:<br>Current value x Factor | 230                     |  |  |
| (Factor = Voltage x cos Phi)                                                 |                         |  |  |
| Send current value after changes value                                       | 7% •                    |  |  |
| Cyclic send                                                                  | 30 min 👻                |  |  |
| Monitoring exceedance of load                                                | not activ               |  |  |

Picture 34 : Total current

#### The following table describes the parameter settings related to the total current:

| ETS - Name                                   | dynamic range<br><b>[Default value ]</b>                                                                   | Remarks                                                                                              |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Object selection for the current measurement | <b>Floating value inmA</b><br>Value in A<br>Value in kW                                                    | Select object value type                                                                             |
| Send actual value after changes value        | not active, 1% -<br>75%<br><b>[not active]</b>                                                             | Select whether the channel current value is added to the total current value                         |
| Cyclic sending                               | <ul> <li>not active</li> <li>15min</li> <li>30min</li> <li>60min</li> <li>90min</li> <li>120min</li> </ul> | Activate / set current range to send<br>message<br>Activate / set the interval of sending<br>message |
| Monitoringexceedanceofload                   | not active<br>active                                                                                       | Activate overload monitoring                                                                         |

Picture35 : Total current



The type of object used to transmit the total current is also optional, but there is a setting option "whole value in Ma" missing. See Chapter "4.6.1 general settings" for details.

The transmission condition of the total current can also be set to transmit when the current

changes more than a certain ratio or at a fixed interval .

The following table describes the objects related to the total current:

| NO.     | Function                  | Length   | Usage                                            |
|---------|---------------------------|----------|--------------------------------------------------|
| 78/ 148 | Value of total current    | 2/4 Byte | Send the current value of the whole equipment    |
| 79/149  | Exceedanceoftotal current | 1 Bit    | Send service request in case of current overload |

Picture 36 Total current communication object

## 9.1.3 Monitoring Overload

The total current only has overload monitoring function, not low load monitoring function. The following figure shows the parameters related to the total current monitoring:

| Monitoring exceedance of load      | activ 🔹             |
|------------------------------------|---------------------|
| Factor for load monitoring x100 mA | 1                   |
| Hysteresis [%]                     | 10                  |
| Behavior at exceeding              | Send ON-telegramm 🔹 |
| Behavior at not exceeding          | Send ON-telegramm 👻 |
| Send exceeding cyclical            | not activ           |

picture **37**: Overload / low load monitoring



The following table describes the monitoring related parameters:

| ETS - Name                             | dynamic range<br>[ <b>Default value</b> ]                                                                  | Remarks                                 |
|----------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Factor for load monitoring x100mA      | 1 - 200<br><b>[1]</b>                                                                                      | Set overload monitoring reference value |
| Hysteresis %                           | 10 - 100<br><b>[10]</b>                                                                                    | Set delay response value                |
| Behavior at exceeding/deviating        | <ul> <li>Send no telegram</li> <li>Send On - telegram</li> <li>Send Off - telegram</li> </ul>              | Set behavior when overloaded            |
| Behavior at not<br>exceeding/deviating | <ul> <li>Send no telegram</li> <li>Send On - telegram</li> <li>Send Off - telegram</li> </ul>              | Behavior when returning to normal       |
| Send exceeding/deviating cyclical      | <ul> <li>not active</li> <li>15min</li> <li>30min</li> <li>60min</li> <li>90min</li> <li>120min</li> </ul> | Activate cycle sending function         |

picture 38: Overload monitoring

The reference value of overload monitoring can be set by the parameter "factor for load monitoring". The reference value is multiplied by 100mA by default. Therefore, the actual settable range is 0,1a to 20A. The parameter "hysteresis" is used as the reference value to judge the current return to normal, which can prevent rapid switching operation. For overload, this value must be subtracted from the reference value. For low load, This value must be added to the reference value. However, this value is only used to judge when the current returns to normal. Therefore, for a given value of 10% and a reference value of 1a, the following calculation can explain the working principle:

Overload judgment: when the current reaches 1a, an overload message will be sent; when the current is lower than 0.9A, a message will be sent to return to normal.

Low load judgment: when the current reaches 1, a low load message will be sent; when the current is higher than 1.1a, a message will be sent to return to normal.

The sending conditions of related communication objects can be set as "send no telegram", "send on telegram" or "send off telegram". It can also be set as periodic transmission.

| NO. | Function                | Length | Usage                 |
|-----|-------------------------|--------|-----------------------|
| 12  | Exceedance of load      | 1 Bit  | Send overload message |
| 13  | Lower deviation of load | 1 Bit  | Send low load message |

The following table describes the related communication objects:



## 9.2 Fault Current / Loading Failure

Each channel can activate the function of detecting current error or loading failure:

| Error message | not activ                       |
|---------------|---------------------------------|
|               | not activ                       |
|               | Fault current if contact opened |
|               | Load faulty if contact closed   |
|               | Fault current / Load faulty     |

Picture 40:error message

#### The following describes:

| ETS-Name            | dynamic range<br>[ <b>Default value</b> ]                                                                      | Remarks                                                                                                                          |
|---------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Error message       | <ul> <li>not active</li> <li>Fault current is contact opened</li> <li>Load faulty if contact closed</li> </ul> | Information type options                                                                                                         |
| Switching threshold | <ul> <li>20mA</li> <li>50mA</li> <li>100mA</li> <li>200mA</li> <li>500mA</li> <li>1A</li> </ul>                | Set reference value<br>For current error, overload<br>service will be sent.<br>for load errors, low load service<br>will be sent |

Picture 41:Current error / load error

The current error or load error function can be activated, or both.

When the channel is open, if the current is greater than the reference value, it is a current error When the channel is closed, if the current is less than the reference value, it is a load error. As long as one of the error functions is enabled and the conditions are met, a message with a value of 1 is sent.

The following table describes the parameters related to error messages:

| NO. | Function                  | Length | Usage                                    |
|-----|---------------------------|--------|------------------------------------------|
| 14  | Loadfaulty                | 1 Bit  | Send load error message                  |
| 14  | Fault current             | 1 Bit  | Send current error message               |
| 14  | Fault current/Load faulty | 1 Bit  | Send load error or current error message |

Picture 42 :Error message object



# 10. Working Time

The work timer can be used to count the accumulated time of channel work, and can also be used to count down the remaining time from the next service request.

Channel D. Operating house counter

## 10.1 Working Time Timer

The following figure shows the relevant parameters of the working timer:

| Ch                                           | Channel & Operating hours counter |  |  |
|----------------------------------------------|-----------------------------------|--|--|
| Type of operating hours counter              | Operating hours counter 🔹         |  |  |
| Count if                                     | Relay ON 🔹                        |  |  |
| Send status of operating hours every   hours | Q [0100]                          |  |  |
| Picture 43 : working time timer              |                                   |  |  |

The following table describes the parameter selection range of the working timer:

| Name                                       | dynamic range<br>[ <b>Default value</b> ] | Remarks                                                                     |
|--------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------|
| Type of operating hours counter            | Operating hours counter                   | Select timing mode                                                          |
| Count if                                   | <ul> <li>Relay ON</li> </ul>              | Select timing conditions                                                    |
| Send status of operating hours every hours | 0 -<br>100<br><b>[0h]</b>                 | Set the time interval for automatic return of timing value, 0 is forbidden. |

Picture 44 : Working timer

The timer can be set to start counting when the channel is on or when the current is greater than a certain value.

Object "response operating hours" can return the timing value. When its parameter value is set to 0, the function is disabled. Object "reset operating hours" is used to reset the timing value.

The following table describes the related timing objects:

| NO. | Name                     | Length | Usage                     |
|-----|--------------------------|--------|---------------------------|
| 8   | Response operating hours | 2 Byte | Send timing value         |
| 9   | Reset operating hours    | 1 Bit  | Set the timing value to 0 |

Picture 45: Timing object



## 10.2 Countdown Timer

The following figure shows the parameters related to the countdown:

| Chan                                       | nel B Operating hours counter |  |
|--------------------------------------------|-------------------------------|--|
| Type of operating hours counter            | Reverse counter               |  |
| Count if                                   | Relay ON 💌                    |  |
| Send status of service hours every [[h]    | 0                             |  |
| Send signal of service at   x10h intervals | 0                             |  |

Picture46: Countdown function

The following table describes the countdown related parameter setting options:

| ETS - Name                              | dynamic range<br>[Default value ]                                                                                                             | Remarks                          |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Type of operating hours counter         | Reverse counter                                                                                                                               | Countdown mode                   |
| Count if                                | Relay ON<br>Current >20mA<br>Current >50mA<br>Current >100mA<br>Current >200mA<br>Current >500mA<br>Current >1A<br>Current >2A<br>Current >5A | Timing condition                 |
| Sendstatusofservicehours<br>every [h]   | 0 -<br>100<br><b>[0h]</b>                                                                                                                     | Set sending status message cycle |
| Send signal of service atx10h intervals | 0 -<br>250<br><b>[0h]</b>                                                                                                                     | Set service request cycle        |

Picture47: Countdown function

The countdown timer can calculate the remaining time from the next service. The parameter "send signal of service at" is used to set the interval time for sending service requests. When it is set to 0, it means that the function is disabled.

Parameter "send status of service hours every..." It is used to set the cycle time of sending status service. When it is set to 0, this function is disabled.



| NO. | Function                 | Length | Usage                         |
|-----|--------------------------|--------|-------------------------------|
| 8   | Time to the next service | 2 Byte | Time left before next service |
| 9   | Reset service            | 1 Bit  | Reset time to set value       |
| 10  | Service required         | 1 Bit  | Request a service             |

The following table describes the objects related to the countdown:

Picture 48: Countdown object